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Overview

1*note: accomplishments will be primarily from prior project, “Designing high lithium-ion 
transference number and highly stable electrolytes for lithium metal batteries.”

• Start Date: Oct. 1, 2021
• End Date: Sept. 30, 2026
• Percent complete: 5%

Timeline

• Total budget (5 years): $1385K
• FY22 funding: $275K

Budget

• Energy Density
• Safety
• Low rate capability

Barriers Addressed

Kristin Persson (UCB/LBNL), for molecular dynamics studies
Nitash Balsara (UCB/LBNL), for electrochemical characterization of transport properties

Partners/Collaborators



Relevance
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• Solid state electrolytes could improve safety of Li metal batteries compared to organic liquid electrolytes by 
suppressing dendrite growth and eliminating flammable battery components.  

• Thin film ceramic electrolytes have excellent conductivity, but suffer from being brittle, which limits their 
processability, particularly at the thicknesses necessary to compete against current state-of-the-art batteries.

• Engineering a porous cathode with ceramic ion conductors has proven challenging due to large solid-solid contact 
resistances.

• Polymer electrolytes suffer from very poor conductivity, but good processability
• We aim to combine the processability of polymers with the high conductivity of ceramics.  We also will focus on 

engineering the cathode-composite electrolyte interface.

• Develop the polymer chemistry to use in the polymer-inorganic composite electrolyte.
• Characterize electrochemical transport and interfacial properties of neat polymers in Li-Li symmetric 

cells.
• Optimize protocol to create thin films of inorganic-polymer mixtures.

Objectives for FY22



Milestones
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Date Milestones Status

December 2021 Establish polymer synthesis by making two neat TFSI-
containing polymers. 

Completed

March 2022 Measure conductivity of two polymers using Li-Li 
symmetric cells 

Completed

June 2022 Measure interfacial impedance evolution of polymer in a 
Li-Li cell. 

On track

September 2022 Synthesize a series of four copolymers with various ratios 
of TFSI monomer and a film-forming monomer. 

On track



*Approach is from prior project that ended in Sept. 2021.  Please see future 
work for proposed approach and plan for current project

Approach*
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Preparation

Characterization Modeling 
(w/ K. Persson)

Concentration cell

• Focus in 2021: Develop electrophoretic nuclear magnetic resonance (eNMR) as a tool to reduce error in 
electrochemical transport measurements.
• Focus in 2021: Synthesize single ion-conducting polymers with low molecular weight.
• Use molecular dynamics to understand molecular underpinnings of ion transport trends

Coarse grained mol. dynamics



Background: Motivation to study polyelectrolyte solutions

5Diederichsen; McShane; McCloskey. ACS Energy Lett.
2017, 2, 2563–2575.

• Newman-type modeling predicts high 
transference number electrolytes would 
enable higher C-rates in Li-ion batteries

t+ =
D+

D+ +D−

• Dry polymer electrolytes suffer from low 
conductivity (each point is a unique polymer)

Systematically understand enhancements in 
transport by adding solvent



Background: Polyelectrolyte solutions potentially have high transference 
number and conductivity
Anion tethered to a polymer backbone then dissolved 
in a battery compatible solvent

– Slower anion diffusion compared to binary salt
– Greater charge on anion
– Conductivities ~1 mS/cm at room temp. 

vs.
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Binary salt electrolyte

Polyelectrolyte solution

𝑡!"#$%& =
𝐷!

𝐷! + 𝐷'

Transference number of various
polyelectrolytes measured using

pulsed NMR techniques assuming no 
ion correlations exist (ideal behavior)



Accomplishment: Simulations predict low t+ for polyelectrolyte 
solutions when accounting for ion correlations 
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Onsager transport equations Green-Kubo relations for 𝐿𝑖𝑗
Computed from molecular dynamics (MD) 

Transference number

‘ideal’  interactions

Correlated ion motion in real solutions

How do we accurately measure polyelectrolyte solution t+ experimentally?

Coarse grained molecular dynamics 



Accomplishment: model polyanion synthesis using reversible 
addition-fragmentation chain transfer (RAFT) polymerization

Repeat 
units Mn (g/mol) PDI

1 321 –

10 3,200 1.07
20 6,400 1.09
40 12,800 1.31

Small chain polymers prepared with 
good polydispersity and yield

Poly(styrene-trifluoromethyl 
sulfonyl imide) (PS-LiTFSI)

Soluble up to 1-2M Li+ in 3:7 EC:EMC



Previous Accomplishments: Voltage loss contributions across a polarized Li-Li cell
e-e-

t

Li+
Li Li

PF6-

For a 15 mV hold, Ohmic contribution only accounts for ~1 mV, SEI dominates.
Polarization measurements involving high interfacial impedance, low electrolyte 
resistance result in experimental artefacts that make deconvolution of both difficult

• SEI resistances dominate potential drop in liquid electrolytes during potentiostatic polarization
• Measured current ratio (r+) can be predicted from a linear statistical effects screening model using 

interfacial resistance (Rint), its standard deviation (dRint), and electrolyte Ohmic resistance (Rs)
• r+ should only depend on iss and Rs

COMSOL model: 15 mV  hold

LiPF6
in EC:EMC

Ohmic contribution is desired quantity for 𝜌# calc.

𝜌!
"#$% = 𝑎𝑅& + 𝑏𝑅'(% + 𝑐𝛿)$%& + 𝑑𝑅&𝑅'(%

15 mV 



Accomplishment: establish electrophoretic NMR (eNMR) to 
measure ion velocities through electric field
• drift of ions in electric field manifests as a phase shift in NMR signal

Fang, Yushmanov, & Furo . J. Magn. Reson. 
2020

Sinnaeve. Concepts Magn. Reson. 2012

Pulsed (PFG) NMR
-measures only self-

diffusion (ideal)

eNMR
-measures ion velocities 

(ui) in electric field 

vs.

el
ec

tr
od

es

NMR tube



∆Φ = 𝛾!𝛿𝑔Δ𝐸"# 𝑢!

𝛥ϕ =	phase	shift
𝛾 =	gyromagnetic	ratio
𝛿 =	pulse	length
𝑔 =	gradient	strength
𝛥 =	drift	time
E	=	applied	electric	field
u =	electrophoretic	mobility

0.5m	styrene-TFSI		in	EC:EMC

Ion 
mobility

Electric
field

pulse 
length

gyromagnetic 
ratio

gradient
strength

drift 
timephase shift

Accomplishment: establish electrophoretic NMR (eNMR) to 
measure ion velocities through electric field (II)

styrene-TFSI	

𝜅 = 𝐹$
"

𝑧"𝑢"𝑐"

eNMR provides excellent agreement
with conductivity probe measurement



Accomplishment: t+ measurement using pulsed field gradient 
(PFG) NMR and eNMR

0.5m PS-LiTFSI in 3:7 EC:EMC (wt.%)

negative t+ suggests significant 
fraction of negatively charged 

ion clusters

When ion velocities are measured using eNMR, rather than 
self-diffusion coefficients using PFG-NMR, t+ decreases 
with increase mol. weight, reaches negative values

As MW increases
• anion self diffusion decreases but not as much 

as intra-chain anion-anion correlated motion 
increases

• cations bound to same chain are highly 
correlated

• cation-anion pairs can have long residence times 
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5. Bridging Length Scales in Electrolyte Transport Theory via the Onsager Framework.” American Institute of Chemical Engineers, 
Boston, MA, November 2021. (Oral) Presented by Kara Fong. 
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Presented by Kara Fong. 
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Accomplishment: Publications and presentations (FY21-22)
Publications

Presentations



Response to previous year’s reviewer’s comments

• Project was not reviewed last year.

14



• Demonstrated critical flaws in the standard (Nernst-Einstein) assumptions 
used to analyze polyelectrolyte transport 

• For high conductivity liquid electrolytes that form high impedance Li metal 
interfaces, polarization techniques measure artefacts associated with the 
high impedance interface
– Results in current ratios (r+) that are correlated to the interfacial resistance, 

making r+ not solely related to electrolyte transport.
• eNMR was developed to study ion velocities through an electric field in 

polyelectrolyte solutions
• Polyelectrolyte solutions were found to have low transference numbers due 

to strong coupling between anions.
• Developed Onsager transport theory and applied it to a coarse-grained 

molecular dynamics simulation model to guide polyelectrolyte design.
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Summary



Future work: Polymer-inorganic composite electrolytes: 
Questions to answer and our strategy (I)
• Polymer matrix design?

– Adhesion, film formation, ion conduction
– Minor quantities of liquid solvent?

• Strategy
– RAFT copolymerization
– Characterize filming forming properties cast 

out of solvent or hot pressed
• Inclusion of Lisicon or LiLaZrO particles

– Analyze ion transport of pure polymers 
using electrochemical techniques and 
electrophoretic NMR
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• How does ion transport occur in composites?
– Do ions move easily across interfaces?
– How does inorganic volume fraction impact ion transport?

• Strategy
– Understand transport through well-defined geometries
– NMR: isotopic labeling (6Li vs 7Li) and solid-state eNMR

17

Future work: Polymer-inorganic composite electrolytes: 
Questions to answer and our strategy (II)



• How do we design low resistance interfaces at the cathode?
– Solid-solid contact resistance?
– Reactivity with high voltage electrodes?
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• Strategy
– NMC coating
– Differential electrochemical 

mass spectrometry, interfacial 
analysis developed in our lab 
for cathode reactivity

– Tomography to understand 
particle distributions

Future work: Polymer-inorganic composite electrolytes: 
Questions to answer and our strategy (III)



• Li metal interfacial impedance. How do we design materials that remain stable 
against lithium, with interfaces that have good room temperature conductivity?

• Processability of inorganic thin films is challenging, particularly at the requisite low 
cost needed for electrolytes (~$5/m2) 
– Will develop composites to impart polymer-like processability, while still taking advantage 

of the high conductivity of inorganic materials.
• Designing a porous cathode in a solid-state battery

– Solid-solid contact resistance needs to be controlled
– Ion conductive (compliant) polymer binders need to be designed

19

Remaining challenges and barriers


